Вход
Регистрация



E-mail: 
Пароль: 
Забыли пароль?
Номер телефона: 
E-mail: 
Зарегистрироваться
Закрыть панель
Заполните следующие поля:

Предмет:
Контактный телефон:
Ваши пожелания:
Отправить заявку
Закрыть панель

Позвоните
8 (495) 626-26-05

И мы подберем репетитора
Оставить заявку на
подбор репетитора

Wiki-учебник

Поиск по сайту

Реклама от партнёров:

Главная >  Wiki-учебник >  Математика > 1 класс > Число и цифра: названия и последовательность натуральных чисел от 1 до 20

Число и цифра

 

Термин  "число"  возникло в древние времена, когда у людей впервые получилось посчитать предметы. Первое время счёт вёлся на пальцах. Затем начали считать по зарубками на палочках. Со временем люди стали понимать числа свободно от предметов и лиц, которые могли подвергаться счёту. Поэтому у славян возникло слово "число".

В XV веке в европейских странах начали распространяться специальные знаки, с помощью которых обозначались числа (числа: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0). Это было изобретением индейцев, а позже они появились в Европе благодаря арабам (арабские цифры). Почему они именно такие, какие есть?

Если посмотреть внимательно на эти арабские числа, то можно заметить, что каждое число соответствует количеству углов, которое можно найти на этой цифре. У числа 0 нет углов, у числа 1 - один угол, а у 9 - все девять углов. 

С середины ХVIII века у слова цифра появилось новое значение — знак числа.

В чем разница между цифрой и числом?

Итак, у слова число и цифра различное значение и происхождение. Число — единица счёта, которая выражает количество (один дом, два дома, и т.д.). Цифра — знак (символ), который обозначает значение числа. Для записи чисел используются арабские цифры — 1, 2, 3… 9, иногда и римские — I, II, III, IV, V и т.д.

В разговоре слова число и цифра заменяют друг друга. Например, под числом мы понимаем не только величину, но и знак, выражающий её.

Названия и последовательность натуральных чисел от 1 до 20

Числа 1,2,3,4,5,6,7,8,9,0, которые используются при счёте- это натуральные числа. С помощью цифр 0,1,2,3,4,5,6,7,8,9 можно записать натуральное число. Такая запись чисел называется десятичной. В каждом классе присутствует три разряда.

  • Приведём ниже таблицу разрядов.

Классы                      Миллиарды                              Миллионы                               Тысячи                                     Единицы

Разряд          Сотни   Десятки   Единицы     Сотни   Десятки   Единицы     Сотни   Десятки   Единицы     Сотни   Десятки    Единицы   

1-е число        2            0                0                3             2              4                0              6              0                 0             8               1

2-е число        4            7                0                0             0              0                2              0              2                 3             0               0  

3-е число        5            0                0                1             0              0                0              3              1                 0             9               0

Вот так читаются некоторые числа:

  • 1) десять миллиардов тридцать два миллиона четыреста шестьдесят девять тысяч восемь;
  • 2) четыреста семьдесят миллиардов сто тридцать тысяч триста;
  • 3) пять миллиардов три миллиона триста десять.

Существуют и такие классы: класс триллионов, класс квадриллионов, класс квинтиллионов. 

Сравнение натуральных чисел

Сравнить два натуральных числа- значит установить, какое из них больше (меньше) другого. Результат сравнения записывается в виде неравенства с помощью знаков > (больше) и < (меньше).

  • 53607 < 400032
  • 96091 < 96100 

Буквенные выражения

Задача

Мама купила ручку по цене 5 руб. и несколько тетрадей по цене 2 руб за 1 тетрадь. Сколько рублей заплатила за покупку мама, если она купила 3 тетради, 6 тетрадей, 10 тетрадей, n тетрадей? Составьте выражение для решения задачи.

1) 3 тетради: 2 x 3 + 5;

2) 6 тетрадей: 2 x 6 + 5;

3) 10 тетрадей: 2 x 10 + 5;

4) n тетрадей: 2 x n + 5.

Выражение 1,2,3 называются числовыми выражениями, а в выражение 4 кроме чисел, соединённых знаками действия, входит буква n.

  • Такое выражение называется буквенным, или алгебраическим.

Примеры буквенных выражений:

50 : 2 + a; 3 x a + b; (47 + a) x 12 + 36;(36 - а) : 10 + 100.

Также существует ряд действий над числами, о которых мы поговорим в отдельной теме.

Нужна помощь в учебе?



Предыдущая тема: Соотношения размеров предметов: сравнение при помощи картинок
Следующая тема:   Десяток как новая счетная единица: счет десятками и примеры
Нравится Нравится

Все неприличные комментарии будут удаляться.



Общеобразовательные предметы:


Математика
Физика
Информатика
Химия
История
География
Биология
Литература
Обществознание
Экономика

Иностранные языки:


Английский язык
Русский язык
Немецкий язык
Французский язык
Испанский язык
Португальский язык
Итальянский язык
Китайский язык
Японский язык
Норвежский язык

В этом разделе:


Определение синуса, косинуса, тангенса и котангенса
Графический способ решения систем уравнений
Решение неравенств методом интервалов
График и свойства квадратичной функции
Квадратный корень

Wiki-учебник:


Что такое Wiki-учебник?
Математика
Русский язык
Геометрия
Физика
Английский язык
Литература
География
Обществознание
История