Вход
Регистрация



E-mail: 
Пароль: 
Забыли пароль?
Номер телефона: 
E-mail: 
Зарегистрироваться
Закрыть панель
Заполните следующие поля:

Предмет:
Контактный телефон:
Ваши пожелания:
Отправить заявку
Закрыть панель

Позвоните
8 (495) 626-26-05

И мы подберем репетитора
Оставить заявку на
подбор репетитора

Wiki-учебник

Поиск по сайту

Реклама от партнёров:

Главная >  Wiki-учебник >  Математика > 10 класс > Критические точки функции: максимумы и минимумы

Критические точки функции

 

Рассмотрим следующий рисунок.

рисунок

На нем изображен график функции y = x^3 – 3*x^2. Рассмотрим некоторый интервал содержащий точку х = 0, например от -1 до 1. Такой интервал еще называют окрестностью точки х = 0. Как видно на графике, в этой окрестности функция y = x^3 – 3*x^2 принимает наибольшее значение именно в точке х = 0. 

Максимум и минимум функции

В таком случае, точку х = 0 называют точкой максимума функции. По аналогии с этим, точку х = 2 называют точкой минимума функции y = x^3 – 3*x^2. Потому что существует такая окрестность этой точки, в которой значение в этой точке будет минимальным среди всех других значений из этой окрестности. 

Точкой максимума функции f(x) называется точка x0, при условии, что существует окрестность точки х0 такая, что для всех х не равных х0 из этой окрестности, выполняется неравенство f(x) < f(x0).

Точкой минимума функции f(x) называется точка x0, при условии, что существует окрестность точки х0 такая, что для всех х не равных х0 из этой окрестности, выполняется неравенство f(x) > f(x0).

В точках максимума и минимума функций значение производной функции равно нулю. Но это не достаточное условие для существования в точке максимума или минимума функции.

Например, функция y = x^3 в точке х = 0 имеет производную равную нулю. Но точка х = 0 не является точкой минимума или максимума функции. Как известно функция y = x^3 возрастает на всей числовой оси.

Таким образом, точки минимума и максимума всегда будут находиться среди корне уравнения f’(x) = 0. Но не все корни этого уравнения будут являться точками максимума или минимума.

Стационарные и критические точки

Точки, в которых значение производной функции равно нулю, называются стационарными точками. Точки максимума или минимума могут иметься и вточках, в которых производной у функции вообще не существует. Например, у = |x| в точке х = 0 имеет минимум, но производной в этой точке не существует. Эта точка будет являться критической точкой функции.

Критическими точками функции называются точки, в которых производная равна нулю, либо производной в этой точке не существует, то есть функция в этой точке недифференцируема. Для того чтобы найти максимум или минимум функции необходимо выполнение достаточного условия.

Пусть f(x) некоторая дифференцируемая на интервале (a;b) функция. Точка х0 принадлежит этому интервалу и f’(x0) = 0. Тогда:

1. если при переходе через стационарную точку х0 функция f(x) и её производная меняет знак, с «плюса» на «минус», тогда точка х0 является точкой максимума функции.

2. если при переходе через стационарную точку х0 функция f(x) и её производная меняет знак, с «минуса» на «плюс», тогда точка х0 является точкой минимума функции.

Нужна помощь в учебе?



Предыдущая тема: Касательная к графику ункции: уравнение касательной
Следующая тема:   Примеры применения производной к исследованию функции: ↑ и ↓
Нравится Нравится

Все неприличные комментарии будут удаляться.



Общеобразовательные предметы:


Математика
Физика
Информатика
Химия
История
География
Биология
Литература
Обществознание
Экономика

Иностранные языки:


Английский язык
Русский язык
Немецкий язык
Французский язык
Испанский язык
Португальский язык
Итальянский язык
Китайский язык
Японский язык
Норвежский язык

В этом разделе:


Программа по математике за 3 класс
Чтение и запись больших натуральных чисел
Преобразование выражений, содержащих квадратные корни
Разложение разности квадратов на множители
Формулы решения квадратных уравнений

Wiki-учебник:


Что такое Wiki-учебник?
Математика
Русский язык
Геометрия
Физика
Английский язык
Литература
География
Обществознание
История