Вход
Регистрация



E-mail: 
Пароль: 
Забыли пароль?
Номер телефона: 
E-mail: 
Зарегистрироваться
Закрыть панель
Заполните следующие поля:

Предмет:
Контактный телефон:
Ваши пожелания:
Отправить заявку
Закрыть панель

Позвоните
8 (495) 626-26-05

И мы подберем репетитора
Оставить заявку на
подбор репетитора

Wiki-учебник

Поиск по сайту

Реклама от партнёров:

Главная >  Wiki-учебник >  Математика > 7 класс > Решение систем уравнений: способ подстановки + примеры

Способ подстановки в решении систем уравнений

 

Системой линейных уравнений с двумя неизвестными - это два или несколько линейных уравнений, для которых необходимо найти все их общие решения. Мы будем рассматривать системы из двух линейных уравнений с двумя неизвестными. Общий вид системы из двух линейных уравнений с двумя неизвестными представлен на рисунке ниже:

{ a1*x + b1*y = c1,
{ a2*x + b2*y = c2

Здесь х и у неизвестные переменные, a1,a2,b1,b2,с1,с2 – некоторые вещественные числа. Решением системы двух линейных уравнений с двумя неизвестными называют пару чисел (x,y) такую, что если подставить эти числа в уравнения системы, то каждое из уравнений системы обращается в верное равенство. Рассмотри один из способов решения системы линейных уравнений, а именно способ подстановки.

Алгоритм решения способом подстановки

Алгоритм решения системы линейных уравнений способом подстановки:

1. Выбрать одно уравнение (лучше выбирать то, где числа меньше) и выразить из него одну переменную через другую, например, x через y. (можно и y через x).

2. Полученное выражение подставить вместо соответствующей переменной в другое уравнение. Таким образом, у нас получится линейное уравнение с одной неизвестной.

3. Решаем полученное линейное уравнение и получаем решение.

4. Подставляем полученное решение в выражение, полученное в первом пункте, получаем вторую неизвестную из решения.

5. Выполнить проверку полученного решения.

Пример

Для того, чтобы было более понятно, решим небольшой пример.

Пример 1. Решить систему уравнений:

{x+2*y =12
{2*x-3*y=-18

Решение:

1. Из первого уравнения данной системы выражаем переменную х. Имеем x= (12 -2*y);

2. Подставляем это выражение во второе уравнение, получаем  2*x-3*y=-18; 2*(12 -2*y) – 3*y = -18; 24 – 4y – 3*y = -18;

3. Решаем полученное линейное равнение: 24 – 4y – 3*y =-18; 24-7*y =-18; -7*y = -42; y=6;

4. Подставляем полученный результат в выражение, полученное в первом пункте. x= (12 -2*y); x=12-2*6 = 0; x=0;

5. Проверяем полученное решение, для этого подставляем найденные числа в исходную систему.

{x+2*y =12;
{2*x-3*y=-18;

{0+2*6 =12;
{2*0-3*6=-18;

{12 =12;
{-18=-18;

Получили верные равенства, следовательно, мы правильно нашли решение.

Ответ: (0,6)


Предыдущая тема: Системы линейных уравнений с двумя переменными
Следующая тема:   Решение систем уравнений: способ сложения + примеры
Нравится Нравится

Все неприличные комментарии будут удаляться.



Общеобразовательные предметы:


Математика
Физика
Информатика
Химия
История
География
Биология
Литература
Обществознание
Экономика

Иностранные языки:


Английский язык
Русский язык
Немецкий язык
Французский язык
Испанский язык
Португальский язык
Итальянский язык
Китайский язык
Японский язык
Норвежский язык

В этом разделе:


Разложение на множители
Решение простейших тригонометрических неравенств
Выделение квадрата двучлена в решении квадратных уравнений
Касательная к графику функции
Как умножить многочлен на многочлен

Wiki-учебник:


Что такое Wiki-учебник?
Математика
Русский язык
Геометрия
Физика
Английский язык
Литература
География
Обществознание
История